Geometric Methods to Solve Max-Ordering Location Problems
نویسندگان
چکیده
Location problems with Q (in general connicting) criteria are considered. After reviewing previous results of the authors dealing with lexicographic and Pareto location the main focus of the paper is on max-ordering locations. In these location problems the worst of the single objectives is minimized. After discussing some general results (including reductions to single criterion problems and the relation to lexicographic and Pareto locations) three solution techniques are introduced and exempliied using one location problem class, each: The direct approach, the decision space approach and the objective space approach. In the resulting solution algorithms emphasis is on the representation of the underlying geometric idea without fully exploring the computational complexity issue. A further specialization of max-ordering locations is obtained by introducing lexicographic max-ordering locations, which can be found eeciently. The paper is concluded by some ideas about future research topics related to max-ordering location problems.
منابع مشابه
Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering Problem (PROP)
Proper arrangement of facility layout is a key issue in management that influences efficiency and the profitability of the manufacturing systems. Parallel Row Ordering Problem (PROP) is a special case of facility layout problem and consists of looking for the best location of n facilities while similar facilities (facilities which has some characteristics in common) should be arranged in a row ...
متن کاملMonotone Proper Interval Digraphs and Min-Max Orderings
We introduce a class of digraphs analogous to proper interval graphs and bigraphs. They are defined via a geometric representation by two inclusion-free families of intervals satisfying a certain monotonicity condition; hence we call them monotone proper interval digraphs. They admit a number of equivalent definitions, including an ordering characterization by so-called MinMax orderings, and th...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملSolving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach
In this paper we propose a new method to solve biobjective combinatorial optimization problems of the max-ordering type. The method is based on the two-phases method and ranking algorithms to eÆciently construct K best solutions for the underlying (single objective) combinatorial problem. We show that the method overcomes some of the diÆculties of procedures proposed earlier. We illustrate this...
متن کاملGeometric branch-and-bound methods for constrained global optimization problems
Geometric branch-and-bound methods are popular solution algorithms in deterministic global optimization to solve problems in small dimensions. The aim of this paper is to formulate a geometric branch-and-bound method for constrained global optimization problems which allows the use of arbitrary bounding operations. In particular, our main goal is to prove the convergence of the suggested method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 93 شماره
صفحات -
تاریخ انتشار 1999